

Igniting imagination and innovation through learning.

Moments

Moment

The moment of a force is a measure of the tendency of the force to rotate the body upon which it acts.

Terminology

The distance must be perpendicular to the force.

Moments Formula

Units for Moments

	Force	Distance	Moment
English Customary	Pound force (lbf)	Foot (ft)	$\underline{\text { lb-ft }}$
SI	Newton (N)	Meter (m)	$\underline{\mathrm{N}-\mathrm{m}}$

Rotation Direction

In order to add moments, it is important to know if the direction is clockwise (CW) or counterclockwise (CCW).

CCW is positive.

Right-Hand Rule

Curl your fingers to match the direction of rotation.

Thumb is pointing . . .
$\underline{U p}=$ Positive
Down = Negative
Toward You = Positive
Away from You = Negative

Right-Hand Rule

Right-Hand Rule

NEGATIVE

Moment Calculations

Wrench

Moment Calculations

Longer Wrench

Moment Calculations L - Shaped Wrench

Moment Calculations
 Z - Shaped Wrench

$$
\mathrm{F}=20 . \mathrm{lb}
$$

Moment Calculations

Wheel and Axle

$$
\begin{aligned}
& \mathrm{D}=\mathrm{r}=50 . \mathrm{cm}=0.50 \mathrm{~m} \\
& \mathrm{M}=\mathrm{F} \times \mathrm{D} \\
& \text { Use the right-hand rule to } \\
& \text { determine positive and } \\
& \text { negative. } \\
& \mathrm{M}=100 \mathrm{~N} \times 0.50 \mathrm{~m} \\
& \mathrm{M}=\underline{\mathbf{5 0 ~ N}-\mathrm{m}}
\end{aligned}
$$

Moment Calculations

Wheel and Axle

What is Equilibrium?
The state of a body or physical system with an unchanging rotational motion.

- Two cases for that condition:

1. Object is not rotating.
2. Object is spinning at the same speed.

- In either case rotation forces are balanced.

The sum of all moments about any point or axis is zero.

$$
\begin{gathered}
\Sigma M=0 \\
M_{1}+M_{2}+M_{3} \ldots=0
\end{gathered}
$$

Moment Calculations

See-Saw

Moment Calculations

See-Saw

$$
\begin{aligned}
& \Sigma \mathrm{M}=0 \\
& \mathrm{M}_{1}+\left(-\mathrm{M}_{2}\right)=0 \\
& \text { Use the right-hand rule to } \\
& \text { determine positive and negative. } \\
& \mathrm{M}_{1}=\mathrm{M}_{2} \\
& \mathrm{~F}_{1} \times \mathrm{D}_{1}=\mathrm{F}_{2} \times \mathrm{D}_{2} \\
& 25 \mathrm{lb} \times 4.0 \mathrm{ft}=40 . \mathrm{lb} \times \mathrm{D}_{2} \\
& 100 \mathrm{~W} \mathbf{f t}=40 . \not \mathrm{H6} \times \mathrm{D}_{2} \\
& 40 . \mathrm{yt}
\end{aligned}
$$

Moment Calculations

Loaded Beam

Select A as the pivot location. Solve for $R_{B y}$

$$
\begin{aligned}
& \Sigma M^{\prime}=0 \\
& M_{B}+\left(-M_{C}\right)=0 \\
& M_{B}=M_{C} \\
& R_{B y} \times D_{A B}=F_{C} \times D_{A C} \\
& R_{B y} \times 10.00 \mathrm{ft}=35.0 \mathrm{lb} \times 3.00 \mathrm{ft} \\
& R_{B y} \times 10.00 \pi=\frac{105 \mathrm{lb}- \pm}{10.00 \neq} \\
& 10.00 \\
& R_{B y}=10.5 \mathrm{lb} \\
& R_{A y}+R_{B y}=35.0 \mathrm{lb} \\
& R_{\text {Ay }}=35.0 \mathrm{lb}-10.5 \mathrm{lb}= \\
& 24.5 \mathrm{lb}
\end{aligned}
$$

Moment Calculations

Truss

Replace the pinned and roller supports with reaction forces.

Moment Calculations

Truss

Select A as the axis of rotation. Solve for $R_{D Y}$

