

Moments

Moment

The *moment* of a force is a measure of the tendency of the force to <u>rotate</u> the body upon which it acts.

Terminology

The distance must be <u>perpendicular</u> to the force.

Moments Formula

Units for Moments

	Force	Distance	Moment
English Customary	Pound force (lbf)	Foot (ft)	<u>lb-ft</u>
SI	Newton (N)	Meter (m)	<u>N-m</u>

Rotation Direction

In order to add moments, it is important to know if the direction is clockwise (CW) or counterclockwise (CCW).

CCW is positive.

CW is **negative**.

Right-Hand Rule

Curl your fingers to match the direction of rotation.

Thumb is pointing

Up = Positive

Down = Negative

Toward You = Positive

Away from You = Negative

Right-Hand Rule

Wrench

F = 20. lb

$$M = -(F \times D)$$

Use the right-hand rule to determine positive and negative.

$$D = 9.0 \text{ in.} = .75 \text{ ft}$$

$$M = -(20. lb x .75 ft)$$

Longer Wrench

L - Shaped Wrench

Z - Shaped Wrench

Wheel and Axle

$$D = r = 50$$
. cm = 0.50 m

$$M = F \times D$$

Use the right-hand rule to determine positive and negative.

$$M = 100 N \times 0.50 m$$

$$M = 50 N-m$$

Wheel and Axle

What is Equilibrium?

The state of a body or physical system with an unchanging rotational motion.

- Two cases for that condition:
 - 1. Object is **not rotating**.
 - 2. Object is spinning at the **same speed**.
- In either case rotation forces are balanced.

The sum of all moments about any point or axis is **zero**.

$$\Sigma M = 0$$

$$M_1 + M_2 + M_3 \dots = 0$$

See-Saw

See-Saw

$$\Sigma M = 0$$

$$M_1 + (-M_2) = 0$$

Use the right-hand rule to determine positive and negative.

$$M_1 = M_2$$

$$\mathbf{F}_1 \times \mathbf{D}_1 = \mathbf{F}_2 \times \mathbf{D}_2$$

25 lb x 4.0 ft = 40. lb x
$$D_2$$

$$100 \text{ Hz-ft} = 40 \text{ Hz} \times D_2$$

$$D_2 = 2.5 \text{ ft}$$

Loaded Beam

Select A as the pivot location. Solve for R_{Bv}

$$\begin{split} \Sigma M &= 0 \\ M_B + (-M_C) &= 0 \\ M_B &= M_C \\ R_{By} \times D_{AB} &= F_C \times D_{AC} \\ R_{By} \times 10.00 \text{ ft} &= 35.0 \text{ lb} \times 3.00 \text{ ft} \\ R_{By} \times 10.00 \text{ ft} &= 105 \text{ lb-ft} \\ 10.00 \text{ ft} &= 10.5 \text{ lb} \\ R_{By} &= 10.5 \text{ lb} \\ R_{Ay} + R_{By} &= 35.0 \text{ lb} \\ R_{Ay} &= 35.0 \text{ lb} - 10.5 \text{ lb} = \end{split}$$

24.5 lb

Truss

Replace the pinned and roller supports with reaction forces.

Truss

Select A as the axis of rotation. Solve for R_{DY}

