

Igniting imagination and innovation through learning.

Force Vectors

Vectors

Vector Quantities
Have both a magnitude and direction
Examples: Position, force, moment

Vector Notation
Vectors are given a variable, such as A or B
Handwritten notation usually includes an arrow, such as \vec{A} or \vec{B}

Illustrating Vectors

Vectors are represented by arrows. Include magnitude, direction, and sense.

Magnitude: The length of the line segment Magnitude $=3$

Illustrating Vectors

Vectors are represented by arrows.
Include magnitude, direction, and sense
Direction: The angle between a reference axis and the arrow's line of action.

Direction $=\underline{\mathbf{3 0}^{\circ}}$ counterclockwise from the positive X axis.
+X

Illustrating Vectors

Vectors are represented by arrows
Include magnitude, direction, and sense
Sense: Indicated by the direction of the tip of the arrow.

Sense = Upward and to the right.

Sense

Trigonometry Review

Right Triangle
A triangle with a $\underline{90^{\circ}}$ angle.
Sum of all interior angles $=\underline{180^{\circ}}$ Pythagorean Theorem: $\mathbf{A}^{\mathbf{2}+B^{2}=C^{2}}$

Trigonometry Review

Trigonometric Functions soh cah toa $\sin \theta^{\circ}=\mathbf{o p p} /$ hyp $\cos \theta^{\circ}=$ adj $/ \mathrm{hyp}$ $\tan \theta^{\circ}=\underline{\text { opp } / \mathbf{a d j}}$

Opposite Side (opp)

Trigonometry Application

The hypotenuse is the Magnitude of the Force, F.
The adjacent side is the x-component, F_{x}.
The opposite side is the y-component, F_{y}.

Adjacent Side F_{X}

Trigonometry Application

$\sin \theta^{\circ}=F_{y} / F^{\ldots} \ldots \ldots \ldots \ldots F_{y}=F \sin \theta^{\circ}$
$\cos \theta^{\circ}=F_{x} / F$

$$
F_{x}=F \cos \theta^{\circ}
$$

$\tan \theta^{\circ}=F_{y} / F_{x}$

Opposite Side

Adjacent Side F_{x}

Vector X and Y Components

Vector \vec{A}
Magnitude $=75.0 \mathrm{lb}$
Direction $=35.0^{\circ}$ from the horizontal

Vector X and Y Components

Solve for $F_{A X}$

$$
\cos \theta=\frac{a d j}{h y p}
$$

$\cos \theta=\frac{F_{\text {cx }}}{\vec{A}}$

$$
\cos 35.0^{\circ}=\frac{F_{A X}}{75.0 l b}
$$

Vector X and Y Components

Solve for $F_{A Y}$

$$
\sin \theta=\frac{o p p}{h y p} \quad \sin \theta=\frac{F_{\Delta v}}{\vec{A}} \quad \sin 35.0^{\circ}=\frac{F_{A Y}}{75.0 l b}
$$

Vector X and Y Components - Your Turn

Vector \vec{B}
Magnitude $=75.0 \mathrm{lb}$
Direction $=35.0^{\circ}$ from the horizontal
$-\mathrm{C}$

Vector X and Y Components - Your Turn

Solve for $F_{B X}$

$$
\cos \theta=\frac{a d j}{h y p}
$$

$$
\cos \theta=\frac{F_{B X}}{\vec{B}}
$$

$$
\cos 35.0^{\circ}=\frac{F_{B X}}{75.0 \mathrm{lb}}
$$

$$
F_{B X}=75.0 \mathrm{lb} \cos 35.0^{\circ}
$$

$$
F_{B X}=61.4 l b
$$

Vector X and Y Components - Your Turn

Solve for $F_{B Y}$
$\sin \theta=\frac{o p p}{h y p}$
$\sin \theta^{\circ}=\frac{-F_{B y}}{\vec{B}}$ $\sin 35.0^{\circ}=\frac{-F_{B y}}{75.0 \mathrm{lb}}$ $F_{B y}=-75.0 \mathrm{lb} \sin 35.0^{\circ}$

$$
F_{B y}=-43.0 \mathrm{lb}
$$

Resultant Force

Two people are pulling a boat to shore. They are pulling with the same magnitude.

Resultant Force

List the forces according to sense.

Label right and up forces as positive, and label left and down forces as negative.

$$
\theta=35^{\circ} \quad F_{A x}=61.4 \mathrm{lb}
$$

$$
\begin{gathered}
\mathrm{F}_{\mathrm{x}} \\
\mathrm{~F}_{\mathrm{Ax}}=+61.4 \mathrm{lb} \\
\mathrm{~F}_{\mathrm{Bx}}=+61.4 \mathrm{lb} \\
\mathrm{~F}_{\mathrm{y}} \\
\mathrm{~F}_{\mathrm{Ay}}=+43.0 \mathrm{lb} \\
\mathrm{~F}_{\mathrm{By}}=-43.0 \mathrm{lb}
\end{gathered}
$$

Resultant Force

$$
\begin{gathered}
\mathrm{F}_{\mathrm{x}} \\
\mathrm{~F}_{\mathrm{Ax}}=+61.4 \mathrm{lb} \\
\mathrm{~F}_{\mathrm{Bx}}=+61.4 \mathrm{lb} \\
\mathrm{~F}_{\mathrm{y}} \\
\mathrm{~F}_{\mathrm{Ay}}=+43.0 \mathrm{lb} \\
\mathrm{~F}_{\mathrm{By}}=-43.0 \mathrm{lb}
\end{gathered}
$$

Sum (Σ) the forces
$\Sigma F_{x}=F_{A x}+F_{B x}$
$\sum F_{x}=61.4 \underline{36} \mathrm{lb}+61.4 \underline{36} \mathrm{lb}$
$\Sigma \mathrm{F}_{\mathrm{x}}=122.9 \mathrm{lb}$ (right)
$\Sigma F_{y}=F_{A y}+F_{B y}$
$\Sigma F_{y}=43.0 \underline{18} \mathrm{lb}+(-43.0 \underline{18} \mathrm{lb})=0$

Magnitude is $\underline{122.9 \mathrm{lb} .}$
Direction is $\underline{0}^{\circ}$ from the x axis
Sense is right.

Resultant Force

Draw the resultant force $\left(F_{R}\right)$

 Magnitude is 123 lbDirection is 0° from the x axis

Resultant Force

Resultant Force

Find the x and y components of vector C .

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Cx}}=300 . \mathrm{lb} \cos 60 .^{\circ} \\
& \mathrm{F}_{\mathrm{Cx}}=\underline{\mathbf{1 5 0} \mathbf{\mathrm { lb }}} \\
& \mathrm{F}_{\mathrm{Cy}}=300 . \mathrm{lb} \sin 60 .^{\circ} \\
& \mathrm{F}_{\mathrm{Cy}}=\underline{\mathbf{2 6 0} \mathbf{l b}}
\end{aligned}
$$

Resultant Force

Find the x and y components of vector D .

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Dx}}=400 \mathrm{lb} \cos 30 .^{\circ} \\
& \mathrm{F}_{\mathrm{Dx}}=\underline{\mathbf{3 5 0} \mathrm{lb}} \\
& \mathrm{~F}_{\mathrm{Dy}}=-400 \mathrm{lb} \sin 30 .^{\circ} \\
& \mathrm{F}_{\mathrm{Dy}}=\underline{-200 \mathrm{lb}}
\end{aligned}
$$

Resultant Force

List the forces according to sense.

$$
\mathrm{F}_{\mathrm{Cy}}=25 \underline{9.8} \mathrm{lb} \quad \vec{C}=300 \mathrm{lb}
$$

Label right and up forces as positive, and label left and down forces as negative.

$$
\begin{gathered}
F_{x} \\
F_{C x}=+15 \underline{0.0} \mathrm{lb} \\
F_{D x}=+34 \underline{6.4} \mathrm{lb} \\
F_{y} \\
F_{C y}=+25 \underline{9.8} \mathrm{lb} \\
F_{D y}=-20 \underline{0.0} \mathrm{lb}
\end{gathered}
$$

Resultant Force

Sum (Σ) the forces

$$
\begin{array}{c|l}
F_{x} & \\
F_{C x}=+15 \underline{0.0} \mathrm{lb} & \sum F_{x}=F_{C x}+F_{D x} \\
F_{D x}=+34 \underline{6.4} \mathrm{lb} & \sum F_{x}=15 \underline{0.0} \mathrm{lb}+34 \underline{6.4} \mathrm{lb}=49 \underline{6.4} \mathrm{lb} \text { (right) } \\
F_{Y} & \\
F_{C y}=+25 \underline{9.8} \mathrm{lb} & \sum F_{y}=F_{C y}+F_{D y} \\
F_{D y}=-20 \underline{0.0} \mathrm{lb} & \sum F_{y}=25 \underline{9.8} \mathrm{lb}+(-20 \underline{0.0} \mathrm{lb})=5 \underline{9.8} \mathrm{lb} \text { (up) }
\end{array}
$$

Sense is right and up.

Resultant Force

Draw the x and y components of the resultant force.

$$
\Sigma F_{x}=49 \underline{6.4} \mathrm{lb} \text { (right) } \quad \Sigma F_{y}=5 \underline{9.8} \text { (up) }
$$

Two ways to draw the X and Y components

496.4 lb
496.4 lb

Resultant Force

Solve for magnitude.

F_{R}

$$
a^{2}+b^{2}=c^{2}
$$

496.4 lb

$$
\begin{aligned}
& (5 \underline{9.8} \mathrm{lb})^{2}+(49 \underline{6.4} \mathrm{lb})^{2}=\mathrm{F}_{\mathrm{R}}{ }^{2} \\
& \sqrt{\left(59.8 l b^{2}\right)+\left(496.4 l b^{2}\right)}=F_{R}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{R}}=50 \underline{0} \mathrm{lb} \text { or } 5.0 \times 10^{2} \mathrm{lb}
$$

Magnitude is $5.0 \times 10^{2} \mathrm{lb}(500 \mathrm{lbs})$

Resultant Force

Solve for direction.

$$
\tan \theta=\frac{o p p}{a d j}
$$

$$
\theta=7^{\circ}
$$

Direction is 7° counterclockwise from the positive X axis.

$$
\begin{aligned}
& \tan \theta=\frac{59.8 \not \boxed{ } \nmid \nmid}{496.4 \not b} \\
& \theta=\tan ^{-1}\left(\frac{59.8}{496.4}\right)
\end{aligned}
$$

Resultant Force

Draw the resultant force $\left(F_{R}\right)$

Magnitude is 500 lb .
Direction is 7° counterclockwise from the positive x axis.

Sense is right and up.
500 lb

