

Igniting imagination and innovation through learning.

Free Body Diagrams

Free Body Diagram

A Free Body Diagram is a visual representation of force and object interactions.

Individual objects or members are isolated from their environment or system, illustrating all external forces acting upon them.

Free Body Diagram Components

Force
A straight line push or pull acting upon an object.
Vector quantities have direction and magnitude.

Direction is illustrated by arrowhead.
Magnitude is illustrated by length of line segment and is the amount of push or pull.

Free Body Diagram Components

Moment

The twisting effort (force) about a point or axis when a force is applied at a distance.

Drawn as an arc with an arrowhead acting about a point indicating direction of CW or CCW.

Moment (Torque) Review

Moment $(M)=$ Force $(F) \times$ distance (d)
Distance (d) is called the moment arm (or lever arm). It must be measured perpendicular to the line of action of the force.

$$
\mathrm{M}=\mathrm{F}(\mathrm{~d})
$$

Free Body Diagram Procedure

A stack of three books, each weighing 5 lb , is sitting on top of a table. Draw the Free Body Diagram (FBD) of the top book.

Free Body Diagram Procedure

 1. Sketch the isolated object. What is the isolated object?Top Book

Free Body Diagram Procedure

2. Sketch the applied and normal forces.

When an object is in contact with and is supported by a second object, the second object can be replaced with a normal force which is perpendicular to the surface of the second object.

Free Body Diagram Procedure

2. Sketch the applied and normal forces.

Normal Force:
Reaction force pushing up on the book, causing it not to fall.

Free Body Diagram Procedure

3. Label objects and forces.

Free Body Diagram Procedure

4. Label dimensions.

For more complex free body diagrams, proper dimensioning is required, including length, height, and angles.

PLTW - DE book

Free Body Diagram Practice

Create a FBD for the sled pictured below.

Free Body Diagram Practice

Create a FBD for the refrigerator pictured below.

Free Body Diagram Practice Create a FBD for the pulley system pictured below.

FBD of Mass 1:

FBD of the movable pulley:

Tension Forces $\left(F_{T}\right)$ are equal throughout the system.

Free Body Diagram Reactions

Different types of support reactions:

- Cable, rope, or chain
- Pin
- Roller
- Built-in end - Cantilever

To aid in completing free body diagrams, connections are often identified with letters.

Cable Support

Cable, rope, chain - Replace with a tension force only.

Cable Support

A sign with weight W is hung by two cables as shown. Draw the FBD of the sign and cables.

Cable Support

FBD of sign and cables:

Pin Support

Pin - Replaced with TWO reaction forces, one vertical (y) and one horizontal (x).

Roller Support

Roller - Replaced with ONE reaction force, perpendicular to surface.

Common Support Reactions

Beams and truss bridges are usually

 supported with one pin support and one roller support. This is called a simply supported object.Create a FBD for the simply supported beam.

Roller at one end allows
expansion/compression of beam or bridge.

Built-In-End Support

Built-in-end (cantilever) - Replaced with TWO forces: one horizontal and one vertical, and ONE moment

Create a FBD for the

 built-in-end cantilever.

Summary Support Reactions

Contact - Replace with a normal force.
Cable, rope, chain - Replace with tension force.
Pin - Replace with two reaction forces; one vertical and one horizontal.
Roller - Replace with one reaction force perpendicular to surface.
Built-in-end (cantilever) - Replace with one horizontal force, one vertical force, and one moment.

Truss Bridge FBD

Supported with a pin at one end and a roller at the other.

Draw the FBD of the entire truss bridge.

Truss Bridge FBD

FBD of the entire truss bridge:

