

Warm-Up

?	Lesson Question	
Ø	Lesson Goals	
		Calculate of triangles and quadrilaterals.
	Classify and quadrilaterals.	Develop proofs of quadrilaterals in the coordinate .
		Use coordinate to solve problems.

Warm-Up Figures in the Coordinate Plane

W ₂ k
· •

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to

help you.

verify	to apply what is known to an expected result
coordinate	numbers in an of numbers
distance	a measurement of between two points
perimeter	the distance a two-dimensional shape
slope	in a relation, the relationship between the change in the value and the change in the value

(0

Warm-Up Figures in the Coordinate Plane

Reviewing the Distance and Slope Formulas

Calculate the $\ensuremath{\text{distance}}$ between the points

with the **coordinates** (-2, 3) and (4, -1).

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(4 - (-2))^2 + (-1 - 3)^2}$$

$$= \sqrt{36 + 16}$$

$$= \sqrt{52}$$

$$= \sqrt{4 \cdot 13}$$

$$= \boxed{}$$

Label the vertical and horizontal distances between the points.

What is the **slope** of the segment?

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 3}{4 - (-2)}$$
$$= \frac{-4}{6}$$
$$= \boxed{\qquad}$$

Instruction Figures in the Coordinate Plane

Instruction

Slide

2

Figures in the Coordinate Plane

Classifying a Triangle in the Coordinate Plane

How can we use coordinates to classify triangles?

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
$$AC = \sqrt{(3 - 0)^2 + (1 - (-3))^2} = \sqrt{25} =$$

$$AB = \sqrt{(3-6)^2 + (1-(-3))^2} = \sqrt{25} =$$

CB is horizontal, so we can just count on the grid. It is 6 units long.

We have two congruent sides, and so this is an

triangle.

Instruction

Slide

4

Instruction Figures in the Coordinate Plane

Classifying a Quadrilateral in the Coordinate Plane Classify quadrilateral ABCD. Input the missing coordinates. $m_{\bar{AB}} = \frac{6-2}{-1-(-5)} = \frac{4}{4} =$,6) $m_{\bar{BC}} = \frac{2-6}{3-(-1)} = \frac{-4}{4} =$ В $m_{_{\rm CD}} = \frac{-2-2}{-1-3} = \frac{-4}{-4} =$ С A ,2) 3 (-6, $m_{_{\overline{AD}}} = \frac{-2-2}{-1-(-5)} = \frac{-4}{4} =$) Ľ Because the slopes of adjacent sides (-1, are negative reciprocals of each other, we can conclude that they form four angles.

Instruction

Instruction

Instruction Figures in the Coordinate Plane

Proofs on the Coordinate Plane

Prove that the diagonals of square QRST

with vertices (-3, 5), (-1, 3), (-3, 1), and

(-5, 3) bisect each other.

Find the midpoint of each diagonal.

$$M_{\bar{RT}} = \left(\frac{-3+(-3)}{2}, \frac{5+1}{2}\right) = (-3, [])$$

The diagonals have the same midpoint,

therefore, they	each other.
anorororo, anoy	cuon ourier.

Instruction Figures in the Coordinate Plane

it is a

Instruction Figures in the Coordinate Plane

Slide

Proving Classification of Quadrilaterals in the Coordinate Plane: Distance Formula

Verify that the quadrilateral is a rectangle.

Step 1: Prove the quadrilateral is a parallelogram.

Let's use the converse of the parallelogram side theorem.

This theorem states that if opposite sides are parallelogram.

 $LM = \sqrt{(-5 - 1)^2 + (0 - 4)^2} = \sqrt{52}$

$$PN = \sqrt{(-3-3)^2 + (-3-1)^2} =$$

$$LP = \sqrt{(-5 - (-3))^2 + (0 - (-3))^2} =$$

$$\mathsf{MN} = \sqrt{(1-3)^2 + (4-1)^2} = \sqrt{13}$$

By the converse of the parallelogram side theorem:

opposite sides are congruent; therefore, it is a

Instruction Figures in the Coordinate Plane

Proving Classification of Quadrilaterals in the Coordinate Plane

Prove that the quadrilateral is a rectangle.

Step 2: Prove that the parallelogram is a

rectangle.

• The rectangle angle theorem states that a

parallelogram is a rectangle if it has one

angle.

Slope
$$\overline{LP} = \frac{0 - (-3)}{-5 - (-3)} =$$

Slope $\overline{NP} = \frac{1 - (-3)}{3 - (-3)} = \frac{4}{6} =$

They are opposite reciprocals of each other, so the sides are

, which means that $\angle LPN$ is a right angle by the definition

of perpendicular. Since the parallelogram has one right angle, then it is a

Summary

Edgenuity[®]

Figures in the Coordinate Plane

Answer	
Review: Key Concepts	
• Distance formula: $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
$y_2 - y_1$	
• Example 1 Formula: $\frac{1}{x_2 - x_1}$	

Summary

Figures in the Coordinate Plane

Use this space to write any questions or thoughts about this lesson.