Figures in the Coordinate Plane

Lesson
 Question

Warm-Up
 Figures in the Coordinate Plane

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

verify	to apply what is known to an expected result
coordinate	numbers in an \square of numbers
distance	a measurement of \square between two points
perimeter	the distance \square a two-dimensional shape
slope	in a relation, the relationship between the change in the \square value and the change in the \square value

Warm-Up

Figures in the Coordinate Plane

Reviewing the Distance and Slope Formulas

Calculate the distance between the points with the coordinates $(-2,3)$ and $(4,-1)$.
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$d=\sqrt{(4-(-2))^{2}+(-1-3)^{2}}$

$$
=\sqrt{36+16}
$$

$$
=\sqrt{52}
$$

$=\sqrt{4 \cdot 13}$
$=\square$
Label the vertical and horizontal distances between the points.

What is the slope of the segment?

$$
\begin{aligned}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{-1-3}{4-(-2)} \\
& =\frac{-4}{6} \\
& =\square
\end{aligned}
$$

Instruction

Figures in the Coordinate Plane

Slide

Classification of Triangles

Triangle classifications include scalene, isosceles, equilateral, and right.

does not have any congruent sides

Equilateral

Isosceles

Right

Edgenuity

Instruction

Figures in the Coordinate Plane

Classifying a Triangle in the Coordinate Plane

How can we use coordinates to classify triangles?

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$$
\mathrm{AC}=\sqrt{(3-0)^{2}+(1-(-3))^{2}}=\sqrt{25}=\square
$$

$$
\mathrm{AB}=\sqrt{(3-6)^{2}+(1-(-3))^{2}}=\sqrt{25}=\square
$$

$\overline{\mathrm{CB}}$ is horizontal, so we can just count on the grid. It is 6 units long.
We have two congruent sides, and so this is an \square triangle.

Instruction

Figures in the Coordinate Plane

How can we use coordinates to classify
triangles?

- We'll determine whether this is a right triangle by calculating the slopes to determine whether two sides are perpendicular.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
m_{-\overline{A C}}=\frac{1-(-3)}{3-0}=\square
$$

$$
m_{\overline{\mathrm{AB}}}=\frac{1-(-3)}{3-6}=\square
$$

Two nonvertical lines are \square if and only if their slopes are opposite reciprocals. The slopes of $\overline{\mathrm{AC}}$ and $\overline{\mathrm{AB}}$ are not negative \qquad of each other, so they are not perpendicular, and this isosceles triangle is not a \square triangle.

Instruction

Figures in the Coordinate Plane

Edgenuity

Instruction

Figures in the Coordinate Plane

Edgenuity

Instruction

Figures in the Coordinate Plane

Edgenuity

Instruction

Figures in the Coordinate Plane

Calculating the Perimeter of a Quadrilateral in the Coordinate Plane

Calculate the perimeter of quadrilateral ABCD .

Perimeter $=A B+B C+C D+A D$
$P=\sqrt{32}+\sqrt{32}+\sqrt{32}+\sqrt{32}$

$P=4 \cdot \sqrt{16 \cdot 2}$
$P=4 \cdot 4 \cdot \sqrt{2}$
$P=16$. \square

Edgenuity

Instruction

Figures in the Coordinate Plane

Proofs on the Coordinate Plane

Prove that the diagonals of square QRST
with vertices $(-3,5),(-1,3),(-3,1)$, and
$(-5,3)$ bisect each other.

Find the midpoint of each diagonal.

$$
\begin{align*}
& M_{\overline{\mathrm{QS}}}=\left(\frac{-3+(-3)}{2}, \frac{5+1}{2}\right)=(\square, 3) \\
& M_{\mathrm{RT}}=\left(\frac{-3+(-3)}{2}, \frac{5+1}{2}\right)=(-3, \square)
\end{align*}
$$

The diagonals have the same midpoint,
 therefore, they \square each other.

Instruction

Figures in the Coordinate Plane

Using Theorems to Prove Classification of Special Quadrilaterals

Theorems can be used to prove the classification of special quadrilaterals in the coordinate plane.

Parallelogram

- Converse of parallelogram diagonal theorem
- If the diagonals of a quadrilateral
\square each other, then the quadrilateral
 is a parallelogram.
- Converse of parallelogram side theorem
- If both pairs of opposite sides of a quadrilateral

a parallelogram
- Single opposite side pair theorem
- If you have opposite sides that are congruent
 then the quadrilateral is a
parallelogram.

Instruction

Figures in the Coordinate Plane

Rectangle

- Rectangle diagonal theorem
- A parallelogram is a rectangle if and only if its
 \square are congruent.
- Rectangle angle theorem
- We only need one \square angle to prove that
 the parallelogram is a rectangle.

Rhombus

- Rhombus diagonal theorem
- A parallelogram is a \square if and only if
 its diagonals are
 , or meet at a right angle.

Instruction

Figures in the Coordinate Plane

Proving Classification of Quadrilaterals in the Coordinate Plane: Distance Formula

Verify that the quadrilateral is a rectangle.

Step 1: Prove the quadrilateral is a parallelogram.
Let's use the converse of the parallelogram side theorem.
This theorem states that if opposite sides are \square, it is a parallelogram.

$$
\begin{aligned}
& \mathrm{LM}=\sqrt{(-5-1)^{2}+(0-4)^{2}}=\sqrt{52} \\
& \mathrm{PN}=\sqrt{(-3-3)^{2}+(-3-1)^{2}}=\square \\
& \mathrm{LP}=\sqrt{(-5-(-3))^{2}+(0-(-3))^{2}}=\square \\
& \mathrm{MN}=\sqrt{(1-3)^{2}+(4-1)^{2}}=\sqrt{13}
\end{aligned}
$$

By the converse of the parallelogram side theorem:
opposite sides are congruent; therefore, it is a
\square

Instruction

Figures in the Coordinate Plane

Proving Classification of Quadrilaterals in the Coordinate Plane

Prove that the quadrilateral is a rectangle.
Step 2: Prove that the parallelogram is a rectangle.

- The rectangle angle theorem states that a parallelogram is a rectangle if it has one \square angle.

Slope $\overline{\mathrm{LP}}=\frac{0-(-3)}{-5-(-3)}=\square$

Slope $\overline{\mathrm{NP}}=\frac{1-(-3)}{3-(-3)}=\frac{4}{6}=\square$

They are opposite reciprocals of each other, so the sides are \square, which means that $\angle \mathrm{LPN}$ is a right angle by the definition of perpendicular. Since the parallelogram has one right angle, then it is a \square.

Summary

Figures in the Coordinate Plane

Lesson Question

How can coordinate algebra be used to verify or prove geometric properties?

Answer

Review: Key Concepts

- Distance formula: $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
-

- Midpoint formula: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Summary

Figures in the Coordinate Plane

Use this space to write any questions or thoughts about this lesson.

