Warm-Up Special Parallelograms

Lesson
 Question

Lesson Goals

Warm-Up
 Special Parallelograms

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

parallelogram	a \square in which both pairs of opposite sides are \square
rectangle	$a \mathrm{a}$ with four \square angles
rhombus	a parallelogram with four \square sides
square	a parallelogram with four \square angles and four \square sides

Warm-Up
 Special Parallelograms

Properties of a Parallelogram

A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel. Properties:

- Opposite sides are

- Opposite \square are congruent.
- Diagonals
 each other.

\square angles are supplementary.

$$
\begin{aligned}
& m \angle \mathrm{~L}+m \angle \mathrm{M}=180^{\circ} \\
& m \angle \mathrm{~L}+m \angle \mathrm{O}=180^{\circ} \\
& m \angle \mathrm{M}+m \angle \mathrm{~N}=180^{\circ} \\
& m \angle \mathrm{~N}+m \angle \mathrm{O}=\square
\end{aligned}
$$

Edgenuity

Instruction

Special Parallelograms

Properties of a Rectangle

When is a parallelogram a rectangle?

Rectangle Theorems

Rectangle angle theorem: A

Rectangle diagonal theorem: A
parallelogram is a
 and only if its \square are congruent.

Instruction
 Special Parallelograms

Proving the Rectangle Angle Theorem

Given: QTRS is a parallelogram; $m \angle \mathrm{~T}=90^{\circ}$.
Prove: QTRS is a rectangle.

Statements	Reason
1. QTRS is a parallelogram	1. given
2. $m \angle \mathrm{~T}=90^{\circ}$	2. given
3. $\angle \mathrm{T} \cong \angle \mathrm{S}$	3. opp. \angle s of a parallelogram are \cong
4. $\mathrm{m} \angle \mathrm{T}=m \angle \mathrm{~S}$	4. def. of congruent
5. $90^{\circ}=m \angle \mathrm{~S}$	5.
6. $m \angle \mathrm{R}+m \angle \mathrm{~S}=$	6. consecutive $\angle \mathrm{s}$ of a parallelogram are supp. $\angle \mathrm{s}$
7. $m \angle \mathrm{R}+90^{\circ}=180^{\circ}$	7. substitution property
8.	8. subtraction property
9. $\angle \mathrm{R} \cong \angle \mathrm{Q}$	9. opposite $\angle \mathrm{s}$ of a parallelogram are \cong
10. $m \angle \mathrm{R}=m \angle \mathrm{Q}$	10. def. of
11. $90^{\circ}=m \angle \mathrm{Q}$	11. substitution
12. $\angle \mathrm{Q}, \angle \mathrm{T}, \angle \mathrm{R}$, and $\angle \mathrm{S}$ are right $\angle \mathrm{s}$	12. def. of right angle
13. QTRS is a rectangle	13. def. of

Instruction
 Special Parallelograms

Properties of a Rhombus

When is a parallelogram a rhombus?

A rhombus has four

Rhombus Angle Bisector Theorem

Rhombus angle bisector theorem: A parallelogram is a rhombus if and only if each of its \qquad bisects two of its angles.

Draw the diagonals on the rhombus.

Instruction
 Special Parallelograms

Properties of Rhombi

Given: $A B C D$ is a parallelogram; $\overline{\mathrm{AC}}$ bisects $\angle \mathrm{BCD}$ and $\angle \mathrm{BAD} ; \overline{\mathrm{BD}}$ bisects $\angle \mathrm{CDA}$ and $\angle \mathrm{ABC}$.

Prove: $A B C D$ is a rhombus.

Statement	Reason
1. $A B C D$ is a parallelogram	1.
2. $\overline{\mathrm{AC}}$ bisects $\angle \mathrm{BCD}$ and $\angle \mathrm{BAD}$	2. given
3. $\overline{\mathrm{BD}}$ bisects $\angle \mathrm{CDA}$ and $\angle \mathrm{ABC}$	3. given
4. $\angle \mathrm{ABE} \cong \angle \mathrm{CBE} ; \angle \mathrm{ADE} \cong \angle \mathrm{CDE}$	4. def. of
5. $\angle \mathrm{ABE}$ and $\angle \mathrm{CDE}$ alt. int. $\angle \mathrm{s}$	5. def. of alternate interior angles
6. $\angle \mathrm{ADE}$ and $\angle \square$ alt. int. $\angle \mathrm{s}$	6. def. of alternate interior angles
7. $\angle \mathrm{ABE} \cong \angle \mathrm{CDE} ; \angle \mathrm{ADE} \cong \angle \mathrm{CBE}$	7. alternate interior angles congruent
8. $\angle \mathrm{ABE} \cong \angle \mathrm{ADE} \cong \angle \mathrm{CDE} \cong \angle \mathrm{CBE}$	8. \square property
9. $\angle \mathrm{BAE} \cong \angle \mathrm{BCE} \cong \angle \mathrm{DCE} \cong \angle \mathrm{DAE}$	9. similar argument as steps 4-8
$10 .$	10. diagonals of a parallelogram bisect each other
11. $\triangle \mathrm{ABE} \cong \triangle \mathrm{CBE} \cong \triangle \mathrm{CDE} \cong \triangle \mathrm{ADE}$	11. AAS
12. $\overline{\mathrm{AB}} \cong \overline{\mathrm{CB}} \cong \overline{\mathrm{CD}} \cong \overline{\mathrm{AD}}$	12.
13. $A B C D$ is a rhombus	13. def. of rhombus

Instruction
 Special Parallelograms

Rhombus Diagonal Theorem

Rhombus diagonal theorem: A parallelogram is a rhombus if and only if its

By SSS, all four triangles formed by the diagonals are

Rhombi

- Are

- Have
 congruent sides
- Have diagonals that are
 bisectors
- Have
 diagonals

Instruction

Special Parallelograms

Squares

A square is both a \square and a rhombus.

- Are parallelograms
- Have four \square angles
- Have
 diagonals
- Have four congruent sides
- Have diagonals that are angle bisectors
- Have \square diagonals

Solving Problems with Properties of Rectangles

Sanjay has 250 feet of fencing to use to enclose a rectangular grassy area for his dog to play. He wants to use 80 feet of his house as the width of one side of the play area. What is the maximum length the rectangle can have?

Edgenuity

Instruction

Special Parallelograms

Applying Properties of Squares to Solve Problems

A new walking path around a playground is in the shape of a square. What is the approximate distance from one corner of the path to the corner opposite it? Round to the nearest meter.

$$
\begin{aligned}
x^{2}+x^{2} & =80^{2} \\
2 x^{2} & =6400 \\
\sqrt{x^{2}} & =\sqrt{3200} \\
x & \approx \square \mathrm{~m} \\
2(56.57) & \approx \square \mathrm{m}
\end{aligned}
$$

Summary
 Special Parallelograms

Lesson

Question
What special properties do rectangles, squares, and rhombi have?

Answer

Review: Key Concepts

Rectangles:
Squares are both rectangles

- are parallelograms with \square \square rhombi.
right angles.
- have congruent \square
Rhombi:
- are parallelograms with congruent \square

- have diagonals that bisect angles.
- have diagonals that are \square

Summary

 Special ParallelogramsUse this space to write any questions or thoughts about this lesson.

