

Warm-Up

Special Parallelograms

Warm-Up Special Parallelograms

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

parallelogram	a in which both pairs of opposite sides are
rectangle	a with four angles
rhombus	a parallelogram with four sides
square	a parallelogram with four angles and four angles and four sides

C

Warm-Up Special Parallelograms

Properties of a Parallelogram

A **parallelogram** is a quadrilateral in which both pairs of opposite sides are parallel. Properties:

Instruction Special Parallelograms

Special Parallelograms

Instruction Special Parallelograms

Instruction

Special Parallelograms

Properties of Rhombi

Given: ABCD is a parallelogram; \overline{AC} bisects $\angle BCD$ and $\angle BAD$; \overline{BD} bisects $\angle CDA$ and $\angle ABC$.

Prove: ABCD is a rhombus.

Statement	Reason
1. ABCD is a parallelogram	1.
2 . $\overline{\text{AC}}$ bisects \angle BCD and \angle BAD	2. given
3. $\overline{\text{BD}}$ bisects \angle CDA and \angle ABC	3. given
4. $\angle ABE \cong \angle CBE; \angle ADE \cong \angle CDE$	4. def. of
5. ∠ABE and ∠CDE alt. int. ∠s	5. def. of alternate interior angles
6. ∠ADE and ∠ alt. int. ∠s	6. def. of alternate interior angles
7.∠ABE \cong ∠CDE; ∠ADE \cong ∠CBE	7. alternate interior angles congruent
8. $\angle ABE \cong \angle ADE \cong \angle CDE \cong \angle CBE$	8. property
9. $\angle BAE \cong \angle BCE \cong \angle DCE \cong \angle DAE$	9. similar argument as steps 4–8
10.	10. diagonals of a parallelogram bisect each other
11. $\triangle ABE \cong \triangle CBE \cong \triangle CDE \cong \triangle ADE$	11. AAS
12. $\overline{AB} \cong \overline{CB} \cong \overline{CD} \cong \overline{AD}$	12.
13. ABCD is a rhombus	13. def. of rhombus

Instruction Special Parallelograms

Instruction

Special Parallelograms

Slide

13

Instruction Special Parallelograms

Applying Properties of Squares to Solve Problems

A new walking path around a playground is in the shape of a square. What is the approximate distance from one corner of the path to the corner opposite it? Round to the nearest meter.

$$x^{2} + x^{2} = 80^{2}$$

$$2x^{2} = 6400$$

$$\sqrt{x^{2}} = \sqrt{3200}$$

$$x \approx \boxed{\qquad} m$$

$$2(56.57) \approx \boxed{\qquad} m$$

Summary

Special Parallelograms

Use this space to write any questions or thoughts about this lesson.