Lesson Question

Lesson Goals

Words to Know

Write the letter of the definition next to the matching word as you work through the lesson. You may use the glossary to help you.
\qquad bisect
\qquad consecutive angles
\qquad parallelogram
\qquad supplementary angles
A. two angles whose measures have a sum of 180 degrees
B. a quadrilateral in which both pairs of opposite sides are parallel
C. in a polygon, two angles that share a side
D. to divide into two congruent parts

Warm-Up Parallelograms

((3) | Angles | Relationship |
| :---: | :---: |
| Corresponding | Congruent |
| Alternate interior | |
| Alternate exterior | Congruent |
| Same-side interior | |

Instruction
 Parallelograms

The Parallelogram Angle Theorem

Parallelogram angle theorem:

Opposite angles in a parallelogram
\square

Mark the congruent angles on the parallelogram.

The Supplementary Consecutive Angles Theorem

Supplementary consecutive angles
theorem: Consecutive angles in a \square are supplementary angles.

$$
m \angle \mathrm{C}+m \angle \mathrm{D}=\square
$$

Instruction
 Parallelograms

Applying Theorems

- Parallelogram angle theorem: \square Label the remaining angles.
angles in a parallelogram are congruent.
- Supplementary consecutive angles
theorem: Consecutive angles in a parallelogram are \square angles.

$$
180^{\circ}-93^{\circ}=\square
$$

Using the Parallelogram Angle Theorem

What are the measures of the angles of parallelogram $A B C D$?

$$
\begin{aligned}
5 p+7 & =9 p-13 \\
5 p+20 & =9 p \\
20 & =4 p \\
\square & =p
\end{aligned}
$$

Find $m \angle \mathrm{~A}$.

$$
5(5)+7=25+7=\square
$$

$$
m \angle \mathrm{~A}=m \angle \mathrm{C}=32^{\circ}
$$

$$
180^{\circ}-32^{\circ}=\square
$$

$$
m \angle \mathrm{D}=m \angle \mathrm{~B}=148^{\circ}
$$

Instruction
 Parallelograms

Instruction

Parallelograms

Using the Parallelogram Diagonal Theorem

What is the length of segment PR?

$$
\begin{aligned}
12 y+4 & =15 y-11 \\
12 y+15 & =15 y \\
15 & =3 y \\
\square & =y
\end{aligned}
$$

Find PT.
$12(5)+4=60+4=\square$
That means that the length of TR is also 64. Add the lengths of PT and TR to find PR.
$64+64=\square$

Summary
 Parallelograms

Lesson
Question
What properties do all parallelograms possess?

Answer

Review: Key Concepts

The parallelogram angle theorem

- Opposite angles are \square
The supplementary consecutive angles theorem
- Consecutive angles are \square
The parallelogram side theorem
\square sides are congruent.

The parallelogram diagonal theorem

- Diagonals \square each other.

Summary

Parallelograms

Use this space to write any questions or thoughts about this lesson.

